Applying Context-Awareness to Service-Oriented Architecture

Florian Kronenberg

Bonn-Aachen International Center for Information Technology
RWTH Aachen

Context-Aware and Ambient Applications, 2007
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Context-Aware Applications.

- **Mobile Devices**
 - Good computing power, memory, networking
 - User experience limited by interaction with small displays and keyboards

- **Context-Awareness**
 - Minimizes amount of interaction user ↔ device
 - Enables provision of situation-dependent services
 - ⇒ augmented reality
Context-Aware Applications.

- **Mobile Devices**
 - Good computing power, memory, networking
 - User experience limited by interaction with small displays and keyboards

- **Context-Awareness**
 - Minimizes amount of interaction user ↔ device
 - Enables provision of situation-dependent services
 - ⇒ augmented reality
Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider
Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider
Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider
Figure: Roles and interactions in an SOA
Mutual influences between context-awareness and service-oriented architecture

- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts

- SOA
 - Context-aware service discovery
 - Context-aware service usage
Context-Awareness and Service-Oriented Architecture

- Mutual influences between context-awareness and service-oriented architecture
- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts
- SOA
 - Context-aware service discovery
 - Context-aware service usage
Context-Awareness and Service-Oriented Architecture

- Mutual influences between context-awareness and service-oriented architecture
- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts
- SOA
 - Context-aware service discovery
 - Context-aware service usage
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
General Concepts of Context Management

- Context is managed at different levels of abstraction
- Contextual information
 - Single scalar value, e.g. temperature
 - Vector, e.g. location (latitude, longitude)
 - Abstract situation, e.g. waiting for the bus, lunch break, in a meeting
- Processed by different components/layers according to level of abstraction
- Multiplicity higher layer to lower layer: 1 - *
A Proposed Layered Reference Architecture

Figure: A proposed layered reference architecture for context management systems
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Sensing

- Sensor hardware provides raw data
- Data tuples represent the state of an observed entity
- Typical examples
 - Temperature
 - Location
 - Movement
 - Proximity of other entities
- Sensing layer
 - Abstracts from underlying hardware
 - Translates between physical and virtual domain
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Context repository

- Stores lower-lever contextual information acquired by sensors
- Data structures according to a formal context-model
- Goal: semantic model that machines can reason about
Context Models

- Key-value
- Markup-based (hierarchical)
- Logic-based
- Ontology-based
Ontologies

- In Philosophy: The study of *being or existence*
- Concepts
- Attributes
- Interrelationships
OWL – The Web Ontology Language

- Part of the Semantic Web activity
- Semantic content to be interpreted by machines
- Core elements:
 - Classes
 - Properties
 - Instances
- Identified uniquely by URIs
- Relationships between classes in terms of Boolean operators
- Properties define valid domain, range and cardinality
Listing 1: An excerpt of an OWL-described food ontology [1]

```
<owl:Class rdf:ID="PotableLiquid">
  <rdfs:subClassOf rdf:resource="#ConsumableThing" />
  <owl:disjointWith rdf:resource="#EdibleThing" />
</owl:Class>

<owl:Class rdf:ID="Juice">
  <rdfs:subClassOf rdf:resource="#PotableLiquid" />
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#madeFromFruit" />
      <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```
CoOL – ASC model

- Context Ontology-Language [3] defined on top of OWL
- Based on formal context model: ASC
 - Entity
 - Aspect
 - Context Information
 - Scale
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Context Querying and Reasoning

- **Querying**
 - For the state of another entity (or self)
 - For entities whose contexts satisfy certain criteria

- **Reasoning**
 - Inferring high-level contextual information from low-level information in repository
 - Existing reasoning engines can be used on ontology-based models
 - Ontologies, repository state, set of rules

- **Query languages depend on context data representation**
Outline

1. Motivation
2. Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
3. Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Context Provider (Aggregation and Delivery)

- Provides contextual information to external client
- Interaction modes
 - Poll (query)
 - Notify (filter)
 - Transparent (trigger)
- Facade that hides intrinsic details of context management
- Potentially composite structure
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
Service-Oriented Context-Aware Middleware

- Introduced by Gu, Pung and Zhang [4]
- Concepts from reference architecture realized as independent services
- Open architecture
- Context provider services
- Context interpreter services
 - Context knowledge-base
 - Context reasoner
 - Uses OWL as representation
 - Generalized context ontology and domain-specific ontologies
 - Notify or trigger actions on clients upon satisfaction of FOL statement
- Service location services
 - OWL-like query language
SOCAM
Service-Oriented Context-Aware Middleware

Figure: Overview of the SOCAM architecture [4]
Outline

1 Motivation

2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)

3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)
CSDS
Context-Sensitive Service Discovery System

- Introduced by Kuck et al. [5, 6]
- Formalized service-discovery model
- Uses concepts from information retrieval
 - Term-based context model
 - Query matched against a collection of services
 - Relevance of service according to ranking function
- User context matched against service context
- Static service context derived from WSDL
- Dynamic context derived from user feedback
CSDS
Context-Sensitive Service Discovery System

User Context

- **Person**
 - gender
 - date of birth
 - languages
 - ...

- **Situation**
 - location
 - date & time
 - weather
 - ...

- **Information World**
 - documents
 - emails
 - webpages
 - ...

Figure: Context of a mobile user [5]
Service Context

WSDL
- purpose
- provider
- language
- cost
- ...

Feedback
- user contexts
- queries
- popularity
- hits
- ...

static features

dynamic features

Figure: An example service context model [5]

CSDS
Context-Sensitive Service Discovery System
Summary

- **Context-Awareness** and **SOA** can mutually take advantage of each other.
- **Service-Oriented Architectures** help building powerful distributed **Context-Management Systems**.
- **Ontology-based context models** help inferring higher-level understanding of situation.
For Further Reading I

W3C:
Food ontology.
Web resource Available online at http://www.w3.org/TR/owl-guide/food.rdf;
visited on May 24th 2007.

Strang, T., Linnhoff-Popien, C.:
A context modeling survey.
In: Workshop on Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International Conference on Ubiquitous Computing, Nottingham, England (September 2004)